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ABSTRACT

To facilitate design optimization of turbine blade shape for reusable launching vehicles,

appropriate techniques need to be developed to process and estimate the characteristics of

the design variables and the response of the output with respect to the variations of the

design variables. The purpose of this report is to offer insight into developing appropriate

techniques for supporting such design and optimization needs. Neural network and

polynomial-based techniques are applied to process aerodynamic data obtained from

computational simulations for flows around a two-dimensional airfoil and a generic three-

dimensional wing/blade. For the two-dimensional airfoil, a two-layered radial-basis

network is designed and trained. The performances of two different design functions for

radial-basis networks, one based on the accuracy requirement, whereas the other one based

on the limit on the network size. While the number of neurons needed to satisfactorily

reproduce the information depends on the size of the data, the neural network technique is

shown to be more accurate for large data set (up to 765 simulations have been used) than

the polynomial-based response surface method. For the three-dimensional wing/blade

case, smaller aerodynamic data sets (between 9 to 25 simulations) are considered, and

both the neural network and the polynomial-based response surface techniques improve

their performance as the data size increases. It is found while the relative performance of

two different network types, a radial-basis network and a back-propagation network,

depends on the number of input data, the number of iterations required for radial-basis

network is less than that for the back-propagation network.



NOMENCLATURE

a : outputof the network

AR : aspectratio

b :biasvector

CL : lift coefficient

CL3/2/CD:powerindex

CD • drag coefficient

e : error

f : transfer function

J • Jacobian matrix

p : input of the network

Re : Reynolds numbers

W • weighting coefficient matrix

Yc :camber

Yt : thickness ratio

c_ : angle of attack

1. INTRODUCTION

With the rapid progress in computer-assisted data processing techniques including those

generated from computational fluid and structure dynamics codes, and experimental

measurements, one often encounters the task of handling a large number of data for

analysis, synthesis, and design optimization. Traditionally, the response surface method

(RSM), Meyer and Montgomery I have proved to be a valuable tool for such purposes.

The RSM typically employs the least squares method construct a lower-order polynomial,

typically a quadratic function. It can also make reasonable estimates regarding statistical

uncertainties. Recently, the neural network method has experienced rapid progress and

become an efficient tool in data analysis. They have several advantages that make them

efficient tools: First, they are adaptive; therefore, they can learn from existing data.

Second, they can generalize after training and can process the data even if they are

incomplete, providing a measure of fault tolerance. Third, they are nonlinear in that they



can capture complex interactions among the input variables in a system. Fourth, neural

networks are highly parallel and thus can be executed much faster than conventional

microprocessors and digital signal processors without losing accuracy 23. Due to these

promising features, it has been extensively used in many areas including aeronautical

• • _l-II
engineering appllcauons Norgaard et at. _ presented the feasibility of reducing wind

tunnel test times by using neural networks to interpolate between measurement and

showed that significant cost saving is realized. Reducing wind tunnel data requirements to

completely define the aerodynamic performance of a tunnel model by using neural

network has been studied by Ross et als. Another effort has been conducted by Protzel et

al.6 to apply neural nets for optimization problems. Sparks and Maghami v-s illustrated the

efficiency of using neural networks in simulation of nonlinear components for a reaction

wheel model 7 and in approximating performance characteristics of a spacecraft s. Rai and

Madavan 9 studied on aerodynamic design procedure for turbine blade design that

incorporates the advantages of both traditional response surface methodology and neural

networks and demonstrated the efficiency of using such a procedure. Similarly, Capenter

and Barhelemy's paper l° also applied to both neural nets and polynomial based response

surface for several optimization problems and made performance comparison for these

two methods. A preliminary effort in using neural networks for time dependent models

which predict unsteady fluid flows have been accomplished by Failer and Schreck 11 The

results illustrated that the neural networks can be used to both predict and control unsteady

aerodynamics.

In the present work, we assess the relative merits of the response surface method and the

neural network method by focusing on the aerodynamic data generated for a two-

dimensional airfoil and a three-dimensional win_rolade model. For the two-dimensional

airfoil, the simulated data obtained from computational fluid dynamics tool, XFOIL

code lz. The airfoil chosen is CLARK-Y 13 and the simulated data include lift coefficient,

Ct., and drag coefficient, CO, at various Reynolds numbers and angles of attack. Two-

dimensional computations based on the coupled inviscid and thin layer flow equations are

conducted by Shyy et al. 13. The purpose is to correlate the aerodynamic performance,

measured by aerodynamic efficiency, Ct./Co, obtained by varying the angle of aitack and

the Reynolds numbers• The wing/blade model is comprised of a potential flow solver,



basedon the PMARC code_4,and a coupled inviscid-viscousflow solver, basedon the

XFOIL. The lift coefficients,CL, and drag coefficients,Co, versuscamber,Yc,aspect

ratios,AR, andangles-of-attack,a, at fixed Reynoldsnumbers,Re,andthicknessratio,Yt

are obtained from the model. The purpose is to first correlate the aerodynamic

performance,measuredby power index, Ct3/2/CD,obtainedby varying the angleof attack

for agivenwing andairfoil shapeandthenidentify possiblestrategiesfor wing andairfoil

optimization. In thepresentreport,wewill concentrateon thefirst part only. In addition

to theassessmentsmadefor the responsesurfacemethodandtheneural network method,

theperformanceof two different neural network types,radial-basisandback-propagation

networksarecompared.

2. BACKGROUND OF NEURAL NETWORKS

Neural networks are massively parallel computational systems compromised of simple

nonlinear processing elements with adjustable interconnections. They are inspired by and

modeled after the learning capability of the biological nervous systems of the brain. The

most important property of the neural networks lies in the fact that they are capable of

modeling the underlying system dynamics by learning from previous experiences, just as

the brain does. The learning process in essence adjusts the weights on the internal

connections of the neural networks through a pre-defined training algorithm. The

processing ability of the network is stored in the inter-unit connection strengths or weights

obtained by a process of adaptation to, or learning from, a set of training patterns _5.

The neuron model and the architecture of a neural network describe how a network

transforms its input to an output. In Figure 1, a neuron with a single input and bias is

shown. The input, p, is transmitted through a connection that multiplies its strength by

weight, w, to form the product w*p. The bias, b, is similar to a weight except that it has a

constant input of 1. The effect of the product w*p and b are added at the summing

junction to form the net input, n, of the transfer function, F, to be discussed later. The

output of the neuron is a=F(w*p+b). Note that both w and b are adjustable scalar

parameters of the neuron to train the ne_'work to perform a particular function. In Figure 1,

a single neuron with R inputs is also shown. Here the inputs, p(1), p(2) ..... p(R) are biased



by the weight elements,w(1,1), w(1,2)..... w(1,R) andthe weightedvaluesare inputs to

the summingjunction. Again, asinglebiasb is used.

In Figure 2, a single layer network with R inputs and S neuronsis shown. A layer of

networkincludesthe combinationof weights,the multiplicationand summingoperations,

the biasesand the transferfunctions.The array of inputs is not includedin a layer. A

network can have a numberof layers as shown in Figure 2. Each layer hasa weight

matrix, a bias vector and an output vector. Each layer can be analyzedas a one-layer

networknoting that the outputsof eachintermediatelayer arethe inputsto the following

layer. The layers of multilayer network play different roles. A layer that producesthe

networkoutputis calledanoutput layer. All other layers are called as the hidden layers.

The general process of training a neural network can be summarized as follows:

1. Initialization:

Initialization is required to generate initial values of weights and biases, ff it is multi-

layered network, then it takes a matrix of input vectors and sizes and transfer functions of

each layer and returns weight and bias for each layer.

2. Learning:

In learning stage the network error, the difference between the neuron response and the

target vector, is calculated. Based on this error, new values of weights and biases are

assigned.

3. Simulation:

The appropriate transfer function is applied to transfer input to output.

4. Training:

Training is completed by applying simulation and learning steps repeatedly to present the

inputs and to change the weight and bias according to the error so that the network can

eventually find weight and bias values that solve the problem.

Further reading on neural networks can be found in References 1622. In this study, Radial-

4basis Networks and Back-propagation Networks are going to be applied to construct the

neural network-based response surface by using Matlab Iv.



(i) Back-propagation Networks

Back-propagation networks are created by generalizing the Widrow-Hoff learning rule to

multiple-layer networks and nonlinear differentiable transfer functions. These networks

are two or more-layer networks with hidden layers of sigmoid transfer function and a

linear output layer as shown in Figure 3. In this study, only one hidden layer is

considered. An Rxl input vector, p, and the corresponding S2xl output vector, a, are used

to train the network until it can approximate a continuous function to any degree of

accuracy 15. The output layer has $2 nodes or neurons, corresponding to the elements of

output vector and S1 is the number of neurons in the hidden layer. The network output

equation for such a single hidden layer and a linear output layer back-propagation network

is given by

a2 = W2(f(W 1A+b 1))+b2

where

W1

W2

bl

b2

A

a2

f

: S lxR weighting coefficient matrix for hidden layer

: $2×S 1 weighting matrix for output layer

: bias vector for hidden layer

: bias vector for output layer

: S 1x i matrix denoting the collection of Rx 1 input vector, p

: S2xl output of the network

: transfer function for the hidden layer

(i)

Back-propagation networks often use the log-sigmoid transfer function or tan-sigmoid

transfer function. The transfer functions of the back-propagation networks should be

differentiable. In this study, tan-sigmoid transfer is considered and it is properties shown

in Figure 3. The tan-sigmoid function itself and a single input neuron with bias when the

tan-sigmoid function is applied are also presented in Figure 3.

In back-propagation network design, the number of neurons in the hidden layer is an

important parameter. It should be chosen large enough to have convergence of the



network to the functional relationship but not too large to cause overmapping. Once it has

been chosen, the network design is reduced to adjusting the weighting coefficient

matrices, W1 and W2 and the weighting bias vectors, b l and b2. These parameters for

back-propagation networks are usually adjusted using a _adient method, named _adient

method or a pseudo Newtonian approach such as Levenberg-Marquardt technique. In

Matlab, back-propagation networks can be trained by using three different training

functions, trainbp, trainbpx and trainlm. First two of them are based on _adient method.

Since it requires small learning rates for stable learning, simple back-propagation with

trainbp is very slow. Trainbpx applying momentum or adaptive learning rate can be

considered as faster method than trainbp but trainhn applying Levenberg-Marquardt

optimization is the most efficient one since it includes improvement techniques to increase

the speed and reliability of simple back-propagation networks. Levenberg-Marquardt

update rule is

AW = (jrj + _I)-i jr e (2)

where

J

I.t

e

: Jacobian matrix of the derivatives of each error to each weight

: Scalar

: error vector

If scalar _. is too large the above expression approximates gradient descent, while if it is

small it reduces to Gauss-Newton method. The Gauss-Newton method is faster and

accurate near an error minimum, so the aim is to shift towards to Gauss-Newton method

as quickly as possible. Therefore, rt is decreased after each successful step and increased

only when a step increases the error 17.

The network error is defined as the difference between the desired output or the target

value and the output of neural network approximation, for a given set of inputs. During

training, the weighting matrices and bias vectors are adjusted to minimize the cost

function that is a function of the error of the network. If q sets of points are used to train



the network, the cost function in terms of the sum squareerror of the network can be

writtenass

qS2 q $2

E = _ e(k) 2 ='_ _ (a _s,f_ (i, j)- a2(i, j)): (3)
k=l j=l i=l

where

a2_ • the desired output

The training continues until the error goal is reached, the minimum error gradient occurs,

the maximum value of _ occurs or the maximum number of epochs has met.

(ii) Radial-Basis Neural Networks

Radial-basis neural networks are two-layer networks with a hidden layer of radial-basis

transfer function and a linear output layer as shown in Figure 4. Radial-basis networks

may require more neurons than standard back-propagation networks, but they can be

designed in a fraction of time it takes to train the standard back-propagation networks.

The are efficient when there are many training vectors available. The network output

equation for a single hidden radial-basis layer and a linear output layer radial-basis

network can also be represented by Equation 1. The transfer function for radial-basis

networks is radial-basis transfer function as shown in Figure 4. A radial-basis neuron

receives as net input vector distance between its weight vector, w and input vector p,

multiplied by the bias b. Figure 4 also shows how the radial-basis function has a

maximum of 1 when its input is 0 and how the radial-basis transfer function can be used

with a neuron having weight and bias 17. The radial-basis function can be represented as

f(n,b)=radbas=exp(-(b.n) 2) (4)

In Matlab, radial-basis networks can be designed by using two different design functions,

solverb'and solverbe. Solverbe designs a network with zero error on training vectors by

creating as many radial-basis neurons as there are input vectors. A more efficient design

8 :



in terms of network size, is obtained from solverb, which utilizes an iterative procedure to

minimize the number of neurons required to obtain a user specified root-mean-square

error. This study investigates neural networks designed by using solverb to map the

power index as a function of camber and aspect ratio since the networks designed with

solverb have less neurons and less training time than solverbe networks. On the other

hand, it must be noted that the networks designed with solverbe gives more accurate

results since it calculates the exact values.

The radial-basis networks can be compared with the standard back-propagation networks

in terms of training time and size as follows:

t. Radial-basis networks, even when designed efficiently with solverb, tend to have

many times more neurons than a comparable back-propagation with tan-sigmoid or

log-sigmoid neurons in the hidden layer. The basic reason for this is sigmoid neurons

can have outputs over a large region of the input space, while radial-basis neurons only

respond to relatively small regions of the input space. The larger the input space

means the more radial-basis neurons required.

2. Designing a radial-basis network often takes less time than training a back-propagation

network and can sometimes result in fewer neurons being used.

2. PROPERTIES OF THE AERODYNA_HC DATA SETS

(i) Two-Dimensional Airfoil

In the first part of this study, a radial-basis neural network scheme is designed to access

the capability for processing the aerodynamic data for low Reynolds number (10"LI0 5)

airfoils. The simulated data obtained from computational fluid dynamics tool, XFOIL, as

reported in References _z-13. The airfoil chosen is CLARK-Y _3 and the simulated data

include lift coefficient, Ct., and drag coefficient, CD, at various Reynolds numbers and

angles of att_'ck. Two-dimensional computations based on the coupled inviscid and thin

layer flow equations are conducted by Shyy et. al t3.

9



Theinput datasetis organizedsothatReynoldsnumberandangleof attackform theinput

vectorrequired,p, for MATLAB Neural Network _7 and the CL and CD are used to obtain

Ct./Co that form the target vector, a.

P = a=[CL/CD 65:<1

t... ..a765x 2

(5)

The aim is to train the network in such a way that there is one-to-one mapping between the

output vector and the target vector. In total, 1530 data as inputs and 765 data as outputs

are available. In the data set, there are 14 different Reynolds number ranging between,

7.5x10 "_to 3.5x105, for angle of attack ranges from -3 ° to 20 °.

(ii) Wing/Blade Model

The aerodynamic data generated from a low Reynolds number wing/blade model that is

obtained by using a potential flow solver, PMARC, and a coupled inviscid-viscous flow

solver, XFOIL. The lift coefficients, CL, and drag coefficients, CD, at various camber, Yc,

aspect ratios, AR, and angles-of-attack, a, at fixed Reynolds number, Re=2.xl05, and

thickness ratio, yt=5%, are used to correlate the aerodynamic performance, measured by

power index, CL3/2/CD.

The results obtained from the model are used to train the network and three different

training data sets are chosen as shown in Table 1. Table 2 summarizes the test data sets

composed of interpolated Yc and AR values. After neural network is training by using one

of the training data set of Table 1, it is going to be tested by one of the test data of Table 2

to demonstrate its generalization capabilities in terms of design parameters.

3. POLYNOI_HAL BASED RESPONSE SURFACE METHOD (RSM)

The approach of RSM is to perform a series of experiments, or numerical analyses, for a

prescribed set of design points, and to construct a global approximation (response surface)

10



of the measured quantity (the response) over the design space. For two-dimensional

airfoil, the response is the lift to drag ratio, Ct./C D, and the design space consists of

Reynolds Number and angle of attack, o_. Up to 4 th order polynomials are tested for the

response surface approximations. The response surface is fit by standard least square

regession using JMP, statistical analysis software. A series of models of polynomials are

tested for the best response surface approximations and the resultant root mean square

(RMS) errors are calculated based on analysis using t-statistics I for each of the model.

According to the results presented in Table 3, Model 11 gives the smallest RiMS for two-

dimensional airfoil case but RMS is still high. These results may be improved by using

higher order polynomials. However, instead of applying higher order polynomial fitting to

full data set, polynomial fitting is applied to a set of network output at fixed Reynolds

number (Re=2.5x105). For this case, since the network is trained at 16 neurons with the

data set of Re=2.5xl05, 16 th order polynomial-based response surface is fitted by using

Matlab.

For the wingfolade model, the response is the flight power index, _L("3/2 /C D , and the

design space consists of a set of design variables including camber, Yc, and wing aspect

ratio, AR. Quadratic, cubic and 4 th order polynomials are also tested for the response

surface approximations for this case. A series of models of polynomials are tested for the

best response surface approximations of 9-points, 15-points and 25-points data set cases

and the resultant root mean square (RMS) errors are calculated based on analysis using t-

statistics ! for each of the model. According to the results presented in Table 4, Model 4

gives the smallest RMS for 9-points and 15-points data set whereas Model 12 enables the

smallest PaX,IS for 25-points data set. Therefore, the resulting equations representing the

response surface are given by,

C3/2/(., 2L ,_o = -0.1252 + 35.5897 ly e + 2.3037AR- 278.3526y c

- 0.1364AR: - 239.7351ARy_

(For 9-Points Case)

+ 02.144.ARyc
(6)

11



C_/"/Co = -0.0920 + 35.9873y c + 2.3062AR - 286.3705yc 2 + 31.9954ARy c

- 0.1382AR" - 238.1881ARy_

(For 15-Points Case)

(7)

C3/2 i[-, .__t, "--o -0.1842+144.7277y c +2.3668AR-5518.7150y'- -57.2096ARy c -0.1463AR z

1 4+ 78040.0120y_ - 947.7483ARy_ - 365906. yc + 4574.1781ARv_

(8)

(For 25-Points Case)

3. RESULTS AND DISCUSSIONS

(i) Comparison of radial-basis design Solverb and Solverbe for Two-Dimensional

Airfoil Case

Training of a network requires repeated cycle through the data, each time adjusting the

values of the weights and biases to improve performance. Each pass through the training

data is called an epoch and the neural network learns through the overall change in

weights accumulating over many epochs. Training continues until the error target is met

or until the maximum number of neurons is exceeded. Testing is performed after training

usually with less data than those used in training stage. In this study, to use solverb as a

desig_n function, a range of maximum number of neurons from 50 to 765 and a range of

spread constants from 1.5 to 6 are used. It is found that solverb cannot satisfy an error

goal less than 0.1. Fibre 5 shows an example of such network error behavior, i.e., sum-

squared network error versus epoch number for CtJCD of a non-converging training

exercise.

Although the root-mean-square network error drops until 200th epoch, after that the

training input matrix became rank deficient and therefore the error begins to increase since

the network receives different information from almost same points. Noting that other

than the spread constant,, the error goal is the only design parameter for radial-basis

networks designed with solverb, one can conclude that the solution with solverb cannot

r
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convergewith the datasetof 765, presumablybecauseof the sizeand the characteristics

of thedata. We will visit this issuewith areduceddatain thenextsection.

In contrastto solverb, solverbe is capable of training the network with the same data set,

as shown in the Figure 6. Figure 6 shows the comparison of the target values of CL/CD

and the trained CtJCD and these two sets are in excellent agreement. Figure 6 also shows

the errors or the differences between the target values of Ct/CD and the trained CL/CD and

the error O(10-t°). It appears that solverbe is far more efficient in handling either the full

or the partial data set.

It is important to make use of solverb since a critical goal during training is to find a

network that is large enough to learn the task but small enough to generalize. With

solverbe, the network creates as many neurons as the input data. As already mentioned

solverb uses fewer network to process the data. In order to train the network by using

solverb as a design function, the data set is reduced in such a way that there is a uniform

angle of attack grid distribution with ACL=_0.5°. Finally the input set is reduced to 510 data

from 1530 data and with this reduced data set solverb was successful in training the

network. Figure 7 shows an example of the network error behavior of a converging run.

From this figure, the network is able to satisfactorily handle the data with 253 neurons.

For this case, the results of the network run with solverb are shown in Figure 8. The target

and network calculated values of CL/CD, are almost mapped one-to-one. Figure 8 also

shows the errors of CL/CD and the order of the max error is O(10-5). The reduced data set

is also trained with solverbe and it appears that both solverb and solverbe can perform

satisfactorily with the reduced data set.

After training is completed, the network is to be used for generalization to determine

whether it can process the data correctly to the patterns that are only qualitatively similar

to the original training patterns. Generalization is useful because the real world data is

noisy, distorted and often incomplete.

4
Previously presented test sets contain the data chosen from the training data set to check

the neural network scheme developed. In order to generalize the scheme a new test data

13



set is generated in such a way that the data set does not include any data from the training

set. The test matrix and several data sets used within this study are summarized in Table 5.

Finally, the relative errors for Test set#3 with solverbe and solverb are compared in Figure

9 for Ct./Co. For this case, maximum error is 2 with solverbe and 1 for solverb. If these

values are compared with target values of the corresponding data, the maximum

percentage error is calculated as 3% with solverbe and 1% for solverb. It should be noted

that for this case, maximum error of solverb is less than that of solverbe.

(ii) Comparison of Neural Network and Polynomial-Based Response Surface

Methods

For wing model, the outputs of the solverb neural network, along with the results of RSM,

are compared to demonstrate the efficiency and the merits of the neural network approach

in data analysis. Figure 1 l(a) illustrates the comparison between RSM and neural network

output results based on 9 points training data. For this case, both methods predicted the

original 9 points accurately but both failed to predict accurately the interpolation points at

yc=0.025 and 0.075. Figure 1 l(b) shows that adding 6 new points at AR=2 and 4 at yc=0.,

0.05 and 0.1 (15-points training data set) does not significantly improve the 6 interpolated

values. However, with the addition of 10 new points at yc=0.025 and 075 at AR=1,2,3,4

and 5, (25-points training data set) both neural network and polynomial RSM accurately

capture the overall behavior of the aerodynamic data as shown in Figure ll(c). The

generalization of the neural network with 25 data points is further assessed by comparing

additional interpolated values at different yc and AR at yc=0.0125 and 0875 at AR=1,2,3,4

and 5. The error norms of both methods for different number of data simulations are

plotted in Figure 12. These comparisons illustrate that both neural and conventional

polynomial fitting methods are doing a good job as the number of points is increased.

4;

For two-dimensional airfoil case, the network outputs obtained by solverb are compared at

fixed Reynolds number (Re=2.5x105). Figure 10 shows this comparison including the

target values. This figure illustrates that network results are closer to target values than

the case for the polynomial fitting results.

14



(iii) Comparison of Radial-Basis Neural Network and Back-propagation Networks

In order to be able to make comparisons between the performance of radial-basis and

back-propagation networks, the training time histories of these networks are summarized

in Table 6 and Table 7. These tables shows that both are efficient in training of 9-points,

15 points and 15-points training data sets in terms of training time since the required

number epochs or iterations is not high. As far as accuracy concerned, applying radial-

basis networks is more advantages for interpolations in Yc as shown in Figure 13 whereas

applying back-propagation networks gives better results for interpolations in AR as shown

in Figure 14. However, both of the networks perform well as the number of points

increases in training data.

4. SUIVLMARY AND CONCLUSIONS

In this study, we applied the polynomial and the neural network based response surface

techniques by considering the low Reynolds number aerodynamic data. We used Matlab

to construct neural network based response surface and JMP for polynomial based

response surface. In the first part of the study, we have considered aerodynamic data

gathered for low Reynolds Number airfoils. For this case, we designed a radial-basis

network using two different design functions: solverb and solverbe. With the beginning

data set provided by Shyy et. all3, it is possible to design a neural network for low

Reynolds number flows with solverbe with almost zero error on training vectors, whereas

it is not possible to train a network using solverb. This difficulty was avoided by reducing

the density of the input data set to prevent the network from receiving different

information from closely spaced data. The reduced data set includes 5 l0 data from 255

simulation instead of 1530 data set from 765 simulation and network is designed and

trained by using both solverb and solverbe. The outputs of the network are compared with

the target values of CL/C_ for training purposes.

After the training stage of the network was completed, new data sets obtained frorfi

XFOIL were used for prediction purposes. The new test data set did not include any data

15



from training data set.The networksprovided resultswith a maximum error of 3% for

Ct./Co.This meansthe network can generalizewith a degreeof fault tolerance.The

networkresultsarecomparedwith thepolynomialbasedresponsesurfaceresults.

In the secondpart of the study, we have consideredaerodynamicdatagatheredfor low

ReynoldsNumberwing model.For this case,we appliedradial-basisneuralnetworksand

comparedthe outputsof the radial-basisnetwork with the polynomial responsesurface

results. The comparisonsdemonstratedthat neural network basedresponsesurfaces

capturethe behavior of the aerodynamicdataobtainedfrom computationalsimulations

more accurately. For this case,we also investigatedthe relative featuresradial-basis

neuralnetwork andback-propagationnetworks. It is observedfrom the resultsthat both

networkscancorrelatethe aerodynamicperformanceasa function of designparameters

preciselyif sufficientnumberof datais usedto train thenetwork. Theseresultsencourage

the further applicationsof the neural network techniquesfor wing and airfoil design

optimization.

6. REFERENCES

IMyers, R. H., and Montgomery, D. C. (1995). Response Surface Methodology - Process

and Product Optimization Using Designed Experiments, New York: John Wiley & Sons,

Inc.

2Hammerstrom, D., "Neural Networks at Work", IEEE Spectrum, pp. 26-32, June 1993.

3Hammerstrom, D., "Working with Neural Networks", IEEE Spectrum, pp.46-53, July

1993.

aNorgaard, M., Jorgenson, C. C., and Ross, J. C., "Neural Network Prediction of New

Aircraft Design Coefficients", NASA TM- 112197, 1997.

5Ross, J. C., Jorgenson, C. C., and Norgaard: M., "Reducing Wind Tunnel Data

Requirements Using Neural Networks", NASA TM-112193, 1997.

16



6protzel, P. W., Palumbo, D. L., and Arras, M. K., "Fault Tolerance of Artificial Neural

Networks with Applications in Critical Systems", NASA Technical Paper 3187.

7Sparks Jr., D.W., Maghami, P. G., "Neural Networks for Rapid Design and Analysis",

AIAA-98-1779.

SMaghami, P. G., Sparks Jr., D.W., "Design of Neural Networks for fast Convergence and

Accuracy", AIAA-98-1780.

9Rai, M.M. and Madavan, N.K., "Aerodynamic Design Using Neural Networks", AIAA

Paper No. 98-4928.

1°Carpenter, W.C. and Barthelemy, J.-F.M., "A comparison of Polynomial

Approximations and Artificial Neural Nets as Response Surface", Structural Optimization

5, pp. 166-174, Springer-Veriag, 1993

l lFaller, W.E. and Schereck, S. J., "Unsteady Fluid Mechanics Applications of Neural

Networks" AIAA 95-0529.

12Drela, M., "XFOIL: An Analysis and Design System for Low Reynolds Number

Airfoils", Lecture Notes in Engineering, Vol.54, pp.l-12, Springer-Verlag, New York,

1989.

13Shyy, W., Klevebring, F., Nilsson, M., Sloan, J., Carrol, B.F. and Fuentes, C., A study of

Rigid and Flexible Low Reynolds Number Airfoils, Dept. of Aerospace, University of

Florida, 1998.

14Ashby, D.L., Dudley, M.R., Iguchi, S.K., Browne, L., and Katz, J., "Potential Flow

Theory and Operation Guide for Panel Code PMARC_12"

"i7



15Fan, X., Herbert, T., and Haritonidis, J.H., "Transition Control with Neural Networks",

AIAA-95-0674.

16papila, N, Fitz-Coy N., and Shyy Wei, "Neural Network-Based Techniques For

Computational Data Analysis", University of Florida Technical Report (unpublished),

AeMES-TR-98-3-01, 1998.

lVDemuth, H. and Beale, M., Matlab Neural Network Toolbox, The Math Works Inc,

1992.

LSKosko, B., Neural Networks and Fuzzy Systems." A Dynamical Systems Approach To

Machine Intelligence, Prentice Hall, 1992.

19jang, J.-S. R., Sun, C.-T. and Mizutani, E., Neuro-Fu_ And Soft Computing: A

Computational Approach To Learning And Machine Intelligence, Prentice Hall, 1997.

2°Anderson, A.J., Handbook Of Neural Computation, IOP Publishing and Oxford

University Press, 1997.

21Hertz, J., Krogh, A. and Palmer, R. G., Introduction to the Theory of Neural

Computation, A Lecture Notes Volume in the Santa F_ Institute Studies in the Sciences of

Complexity, 1991.

22 Greenman, R. M., "Two-Dimensional High-Lift Aerodynamic Optimization Using

Neural Network", NASA/FM- 1998-112233.

18



7. LIST OF TABLES

Table 1. Training Data Sets for wing model ....................................................................... 21

Table 2. Test Data Sets for wing model based on AR and y¢ ............................................ 21

Table 3. Root Mean Square (RMS) for airfoil case ............................................................ 22

Table 4. Root Mean Square (RMS) for wing model: 9-points, 15-points and 25-points data

sets ................................................................................................................................ 23

Table 5. Summary of the data analyzed for two-dimensional airfoil ................................. 24

Table 6. Training History of Radial Basis Networks with Solverb .................................... 24

Table 7. Training History of Backpropagation Networks with Trainlm ............................ 24

8. LIST OF FIGURES

Figure 1. Illustrations of single and multiple input neuron ................................................. 25

Figure 2. Illustrations of single and multiple network layers of neurons ........................... 26

Figure 3. Backpropagation Neural Network Architecture (a) and Tan-sigmoid Transfer

Function for Backpropagation Neural Networks (b) ................................................... 27

Figure 4. Radial Basis Neural Network Architecture (a) and Radial Basis Transfer

function for Radial Basis Neural Networks (b) Neural Networks (b) ......................... 27

Figure 5. Non-converged root-mean-square network error behavior ................................. 28

Figure 6. Comparison of the Results and Absolute Errors for CL/CD with solverbe for full

data set .......................................................................................................................... 29

Figure 7. Converging sum-squared network error behavior ............................................... 30

Figure 8. Comparison of the Results and Errors for CL/CD with solverb for 510 data ...... 3 l

19



Figure9. Error Comparisonfor testset#3 for CL/Cowith solverbe and solverb .............. 32

Figure 10. Comparison of Results and Errors of the Network Outputs with 2D Polynomial

Fitting of 16 th order at Re=2.5xl05 ............................................................................. 33

Figure 11. Comparison of Radial Basis Neural Network Results with Polynomials for 9-

Points Training: Neural Network #1 (a), for 15- Points Training: Neural Network #2

(b), and for 25-Points training: Neural Network #3 (c) ................................................ 35

Figure 12. Comparison of Error Norms of Radial Basis Neural Network Results with

Polynomials For Different Training Data sets ............................................................. 35

Figure 13. Comparison of Radial Basis Network with Backpropagation Network Results

for 9- Points Training: Neural Network#1 (a), for 15- Points Training: Neural

Network#2 (b), and for 25- Points Training: Neural Network#3 (c) (for y¢

interpolation) ................................................................................................................ 37

Figure 14. Comparison of Radial Basis Network with Backpropagation Network Results

for 9- Points: Neural Network#1 (a), and for 15- Points Training: Neural

Network#2(b) (for AR interpolation) ........................................................................... 38

2O



Table 1. Training Data Sets for wing model

9-Points Training
AR

1

1

1

3

3

15-Points Training DataData

Yc CL_/Co
0 2.001123

0.05 4.12244

0.1 3.686585

0 5.639781

.05 9.68733

O.I 8.680556

0 7.941356

0.05 14.09417

0.1 12.89511

AR

1 1

2 1

2 1

3 2 2

5 3 2

5 3 2

4

4

4 3

5 3

5 3

5 3

4

yc CL /C.
0 2.001123

0.05 4.12244

0.1 3.686585

0 4.03

.05 7.12

0.1 6.34

0 5.639781

0.05 9.68733

0.1 8.680556

0 6.92

.05 11.99

0. I 10.87

0 7.941356

0.05 14.09417

0. I 12.89511

25-Points Training Data
AR ._fg

Yc CL /Co
0.0 2.001123

0.025 4

0.05 4.12244

0.075 3.99

0. l 3.686585

0.0 4.03

0.025 7.07

0.05 7.12

0.075 6.89

0. I 6.34

0.0 5.639781

0.025 9.64

0.05 9.68733

0.075 9.39

0.1 8.680556

0.0 6.92

0.025 l 1.86

0.05 11.99

0.075 11.66

0.1 10.87

0.0 7.941356

0.025 13.83

0.05 14.09417

0.075 13.73

0.1 12.89511

Table 2. Test Data Sets for wing model based on AR and y_

Test Set#1 for yc

AR y¢

1 0.025

! 0.075

3 0.025

3 0.075

5 0.025

5 0.075

Test Set#2 for Yc

AR y_

1 0.025

1 0.075

2 0.025

2 0.075

3 0.025

3 0.075

4 0.025

4 0.075

5 0.02"5

5 0.075

Test Set#3 for y¢

AR y¢

1 0.0125

1 0.0875

2 0.0125

2 0.0875

3 0.0125

3 0.0875

4 0.0125

4 0.0875

5 0.0125

5 0.0875

Test Set#1 for AR

AR yc

2 0

2 0.05

2 0.1

4 0

4 0.05

4 0.1

Test Set#2 for AR

AR Yc

2 0

2 0.025

2 0.05

2 0.075

2 0.1

4 0

4 0.025

4 0.05

4 0.075

4 0.1
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Table 3. Root Mean Square (tLMS) for airfoil case

Model

No

1

2

3

4

5

6

10

11

12

MODEL

Cl (7. Z+C 2 (7. +C3 ft. Re +c4Re +csRe'+c6

ct _ z+c2 cc +ca cc Re +c4Re +csReZ+c6+c7 cc _

c_ _xZ+c., cc +c3 c_ Re +c4Re +csReZ+c6+c7Re °

et cc "+cz a +c3 cc Re +c4Re +csRe"+c6+cTARycZ+ csRe j

3

ct ccZ+c,. c_ +c3 cz Re +c4Re +csRe-+c6+cTRe +c8 ocReZ+c9Re ct :

Cl U. Z+C 2 Ct +C 3 (7. Re +c4Re+csReZ+c6 + c7 _x _+c8 cc ReZ+cgRe a z

P . "i-Cl ¢x "+c, ct c3 oc Re+c4Re-i-CsReZ+c6+c7 cc J+c8 oc ReZ+c9Re cz z+ cloRe _

CI _ Z+C2 (X +C 3 (X ee-z-c4Re+c5eeZ+c6+c7 (z _+c8 _ eeZ+c9ee (x -'+ CloRe j

4
+Cll cf.

Cl C/. -'+C2 (Z +C 3 CL Re-+-c4Re+csReZ+e6+c7 (z _+c 8 c£ ReZ+e9Re a z+ CloR&

+cllRe 4

Cl cc Z+c2 cc +e3 oc Re+c4Re+csRe-'+c6+c7 cc J+c8 cc ReZ+c9Re at z+ ctoRe._

+Cll O_ 4+ct2Re4

et cc z+e2 oc +c3 oc Re+c4Re+csRe2+c6+c7 oc J+e8 cc ReZ+cgRe cc 2+ ctoRe J

+Cll (Z 4+ci2Re4+Cl3Re2 cc 2+cl4Re3

ct o_ Z+c2 cc +c3 cc Re+c4Re+esReZ+c6+c7 cc %cs ct ReZ+cgRe cc z+ CloRe J

+cH o_ 4+ci2Re4+cl3Re2 cc 2+e14Re3 cc +ctsRe oc 3

RMS

3.5474

3.3554

3.4186

3.1644

2.955l

2.544

2.4737

2.4126

2.4606

2.a988

2.2600

2.2647
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Table 4. Root Mean Square (RMS) for wing model: 9-points, 15-points and 25-points data
sets

Model

No

1

2

3

4

5

6

7

8

10

11

12

MODEL

c_AR2+czAR+czARyc +c4yc +csyc2+C6

_ 3
elAR'+c2AR+c3ARyc +c4Yc +esyc_+C6 + c7AR

elAR'+czAR+c3ARyc +e4Yc +c5yc2+C6 + c7yc 3

ctAR:+ezAR+e3ARyc +C4Yc +c5yc2+C6 +

,)

c7ARyc"

cIAR'+czAR+c3ARyc +c4yc +csyc-+e6

+c7Yc3+csARyc 2

clAR'+c,.AR+c3ARyc +c4yc +esYc'+C6

2 "
+c7yc3+csARyc +e9YcAR-

clAR"+c2AR+e3ARyc +c4Yc +esYc:+C6 +

cvAR3+caARyc2+ c9AR 3

cIAR2+c2AR+c3ARyc +c4Yc +c5yc2+C6

+c7Yc3+csARyc +cgycAR'+ cIoAR 3

ctAR+c,_ARyc +czyc +c4Yc:+C5

+e6Yc3+c7ARyc 2

ctAR+czARyc +c3yc +e4ycZ+Cs +caARZyc

etAR"+c,_AR+e3ARyc +e4yc +esYc:+e6

+cTyc3+esARyc2+egyc 4

cIAR2+ezAR+c3ARyc +e4Yc +esYc2+C6

+c7Yc3+esARyc2+c9yc4+C loARyc 3

RMS

9 data

0.8047

0.1162

RMS

15 data

0.5172

0.5475

0.0738

R/MS

25 data

0.7800

0.8007

0.5524

0.3207

" '90.026-

0.6961

0.3350

0.4248

0.8044

0.2383

0.1073

r
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Table 5. Summary of the data analyzed for two-dimensional airfoil

Trained

Data Set

Full data set

Reduced Data

Set

Reduced Data

Set

Test

Data Set

Test # 1:

data chosen from full

data set

Test #2:

data chosen from

reduced data set

Test #3:

data chosen from full

data set

Total Number

of Data

in Trained Data Set

1530

510

510

Total Number

of Data

in Test Data Set

322

182

210

Table 6. Training History of Radial Basis Networks with Solverb

Neural

Network No.

2

3

No. of data

15

25

No. of

Neurons

13

25

No. of

Epochs

13

23

Steady State

Error

104

10 -4

10 -4

Spread

Constant

1.175

3.25

1.0

Table 7. Training History of Backpropagation Networks with Trainlm

Neural No. of data No. of Neurons No. of Epochs Steady State

Network No. Error

1 9 20 11 3.69x I 0"_

2 15 20 10 4.5x10 "_

3 25 20 97 8.37x 10 -4
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Input Neuron Layer 1 Neuron Layer 2

R s_l S1 szx_ $2
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Where...

R = tt inputs
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$2 = # tayer 2 neurons

a a

........... ....

a -- tansig(n) a = tansig(v_*p÷b)

Tan-Sigmoid Transfer Function Single Input Tan-Sigmoid Neuron

Figure 3. Backpropagation Neural Network Architecture and Tan-sigmoid Transfer

function for Backpropagation Neural Networks
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Comparison of CL/CD
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Comparison of Radial Basis Network Results with Backpropogation

Network (9-points Training: Network 1)
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Comparison of Radial Basis Network Results with

Backpropogation Network (25-points Training: Network 3)
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Figure 13. Comparison of Radial Basis Network with Backpropagation Network Results for 9-
Points Training: Neural Network# 1 (a), for 15- Points Training • Neural Network#2 (b), and for

25- Points Training • Neural Network#3 (c) (for yc interpolation)
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Comparison of Radial Basis Network Results with Backpropogation

Network (9-points Training: Network 1)

30

--/

¢J

25

2O

..... .G ............. G ....... e ....
-'°° ° °°O

°e°,
.°

• "" - --e .......... e .... o
I _-0- .... 0 .......... 0

150--

0 ----)_--CFD

0 0.02 0.04

AR=4

AR=2

AR=5

AR=4

AR=3

AR=2

AR=I

0.06

Y_c

- -[] - Backpropagation

- - e- - Radial Basis

- - X - CFD off-training data

(a)

16

Comparison of Radial Basis Network Results with

Backpropogation Network (15-points Training: Network 2)

14. x

10 i /, X" .O--'7,-- AR=4

<' ---/-:--: ..... =_:27-'-:2)-: :::-:. AR=-2(J 6

/

4 _ X x _ AR=-I

2

0 I

0 0.02 0.04 0.06

Y_c

_C..=D

- - El- - Backpropagation

- -o _ Radial Basis

- - X _ C_..,FDoff-training data

(b)
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